GABAergic circuits control spike-timing-dependent plasticity.

نویسندگان

  • Vincent Paille
  • Elodie Fino
  • Kai Du
  • Teresa Morera-Herreras
  • Sylvie Perez
  • Jeanette Hellgren Kotaleski
  • Laurent Venance
چکیده

The spike-timing-dependent plasticity (STDP), a synaptic learning rule for encoding learning and memory, relies on relative timing of neuronal activity on either side of the synapse. GABAergic signaling has been shown to control neuronal excitability and consequently the spike timing, but whether GABAergic circuits rule the STDP remained unknown. Here we show that GABAergic signaling governs the polarity of STDP, because blockade of GABAA receptors was able to completely reverse the temporal order of plasticity at corticostriatal synapses in rats and mice. GABA controls the polarity of STDP in both striatopallidal and striatonigral output neurons. Biophysical simulations and experimental investigations suggest that GABA controls STDP polarity through depolarizing effects at distal dendrites of striatal output neurons by modifying the balance of two calcium sources, NMDARs and voltage-sensitive calcium channels. These findings establish a central role for GABAergic circuits in shaping STDP and suggest that GABA could operate as a Hebbian/anti-Hebbian switch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike-Timing Dependent Plasticity in Inhibitory Circuits

Inhibitory circuits in the brain rely on GABA-releasing interneurons. For long, inhibitory circuits were considered weakly plastic in the face of patterns of neuronal activity that trigger long-term changes in the synapses between excitatory principal cells. Recent studies however have shown that GABAergic circuits undergo various forms of long-term plasticity. For the purpose of this review, w...

متن کامل

GABAergic Activities Control Spike Timing- and Frequency-Dependent Long-Term Depression at Hippocampal Excitatory Synapses

GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and postsynaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and postsynaptic spiking at θ and γ oscil...

متن کامل

GABAergic Synaptic Transmission Regulates Calcium Influx During Spike-Timing Dependent Plasticity

Coincident pre- and postsynaptic activity of hippocampal neurons alters the strength of gamma-aminobutyric acid (GABA(A))-mediated inhibition through a Ca(2+)-dependent regulation of cation-chloride cotransporters. This long-term synaptic modulation is termed GABAergic spike-timing dependent plasticity (STDP). In the present study, we examined whether the properties of the GABAergic synapses th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 22  شماره 

صفحات  -

تاریخ انتشار 2013